SHORT PAPER

J. Chem. Research (S), 2001, 394–395

Samarium (III) triiodide catalysed reaction of salicylaldehydes with active methylene compounds[†] Jue Chen^a and Yongmin Zhang^{*,a,b}

^aDepartment of Chemistry, Zhejiang University, Xixi Campus, Hangzhou, 310028, P. R. China ^bLaboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China

The unambiguous synthesis and isolation of 2-oxo-2*H*-1-benzopyran derivatives are described. The Knoevenagel condensation of 2-hydroxy benzaldehydes with active methylene compounds catalysed by samarium triiodide resulted in coumarium derivatives in fair yields under refluxing conditions.

Keywords: samarium (III) triiodide, salicylaldehydes, methylene

2-Oxo-2*H*-1-benzopyran derivatives have attracted strong interest due to their useful pharmacological properties, such as anticoagulant,¹ spasmolytic,² anthelmintic³ and diuretic⁴ activity. There have been many synthetic routes to 2-oxo-2*H*-1-benzopyrans, including the Perkin reaction,⁵ Reformatsky reaction,⁶ Michael addition⁷ and Knoevenagel condensation.⁸ Due to their great importance, the development of novel syntheses of benzopyrans still remains an active research area.

Organolanthanide chemistry is of great interest and recently reports on using samarium (III) in organic chemistry have rapidly increased.⁹ For example, we have reported that α -haloketones could react with aldehydes to give α , β -unsaturated ketones promoted by SmI₃.¹⁰ We also found that samarium triiodide could promote Michael addition of active methylene compounds to α , β -unsaturated esters to form δ -carbonyl esters with fair yields.¹¹ Mori reported that in the presence of SmI₂ or SmI₃ α -haloketones could react with α -ketocarboxylates or α -diketones to form α -hydroxy- γ -ketocarboxylates and 2-hydroxy-1, 4-diketones respectively.¹² Herein, we report a simple and convenient synthesis of 2-oxo-2H-1-benzopyrans from salicylaldehydes and active methylene compounds catalysed by samarium triiodide (Scheme 1).

 $XCH_2Y = CH_2(CN)_2$, $CH_2(CO_2Et)_2$, $NCCH_2CO_2Et$, $CH_3COCH_2CO_2Et$ $NCCH_3SO_2Ph$, $EtCO_2CH_2SO_2Ph$

Scheme 1

The results are summarised in Table 1. When 1 mmol salicylaldehydes, 1.2 mmol active methylene compounds and 0.2 mmol SmI₃ were mixed and refluxed in dry THF under a nitrogen atmosphere for a given time (indicated in Table 1), 2-oxo-2*H*-1-benzopyrans were formed with satisfactory yields. We found that the reaction could not take place at room temperature but proceed smoothly under reflux conditions. When a stoichiometric amount of SmI₃ was used, the yields were not increased.

The present procedure has the advantage of progressing by a straightforward sequence of reactions to fair yields. It is also

Table 1Synthesis of 2-oxo-2H-1-benzopyrans catalysed bySml3 in THF

Entry	R	Х	Y	T(h)	Yield/% ^a
3a	н	CN	CO2C2H	40	68,70 ^b
3b	Н	CN	ĆŃ	30	66
3c	Н	CO2C2H	CO2C2H	28	76 ^c ,80 ^b
3d	Н	CO2C2H	ĊĤ₃ĆŎ	28	70
3e	Н	CO2C2H	SO ₂ Ph	32	70
3f	Н	ĆŃ	SOĴPh	32	65
3g	CI	CN	CO2C2H2	40	68
3h	CI	CN	ĆŇ	38	70
3i	CI	CO2C2H2	CO2C2H2	28	68 ^c
3j	CI	CO,C,H,	ĊĤ₃ĆŎ	32	72
3k	CI	$CO_2C_2H_5$	SO ₂ Ph	32	65

^alsolated yields based on salicylaldehydes. ^bThe yield was obtained when using stoichiometric amounts of Sml₃. ^cThe unexpected products 3-hydroxycarbonyl-2-oxo-2*H*-1- benzopyrans were obtained.

more convenient than the previous method⁷ in that it eliminated the necessity of preparing the requisite aryllithium. Compared with condensation carried out by the Knoevenagel method using piperidine as a catalyst, this reaction was performed under neutral, mild conditions and avoided some side reaction that occurred in basic conditions. Thus, this method represents a novel complement to the traditional Knoevenagel synthesis. The mechanism should be similar to that which we proposed previously.¹³

Experimental

Tetrahydrofuran was distilled from sodium-benzophenone immediately prior to use. All reactions were conducted under a nitrogen atmosphere. Melting points were uncorrected. Infrared spectra were recorded on a Bruker Vector 22 spectrometer in KBr with absorptions in cm⁻¹. ¹H NMR spectra were determined on a Bruker AC-80 spectrometer as CDCl₃ solutions. Chemical shifts were expressed in ppm downfield from internal tetramethylsilane. Mass spectra were recorded on a HP5989B Mass spectrometer.

General procedure for synthesis of the 2-oxo-2H-1-benzopyrans **3**: A solution of salicylaldehydes **1** (1 mmol) and active methylene compounds **2** (1.2 mmol) in anhydrous THF (3 ml) was added to a solution of SmI₃ (0.2 mmol) in THF (20 ml) and the reaction mixture was stirred at 65°C under a dry nitrogen atmosphere. At completion, the reaction mixture was quenched with 1mol/1 HCl (5 ml) and extracted with diethyl ether (3 × 15 ml). The combined extracts were washed with a saturated solution of Na₂S₂O₃ (15 ml) and a saturated solution of NaCl (15 ml) and then dried with anhydrous Na₂SO₄. After evaporating the solvent under reduced pressure, the crude product was purified by preparative TLC on silica gel using ethylacetate-cyclohexane (1:6) as eluent.

3-ethoxycarbonyl-2-oxo-2H-1-benzopyran **3a**: m.p. 92–93°C (lit.,¹⁴ 91–92 °C); v_{max} (KBr) /(cm⁻¹) 1765 (C=O), 1610 (C=C);

^{*} To receive any correspondence.

[†] This is a Short Paper, there is therefore no corresponding material in J Chem. Research (M).

 $\delta_{\rm H}\,({\rm CDCl_3})$ 1.43 (3 H, t, $J=7.0{\rm Hz},\,{\rm CH_3}),\,4.37{-}4.46$ (2H, m, ${\rm CH_2}),\,7.27{-}7.57$ (4H, m, ArH), 8.52 (1H, s, CH).

3-cyano-2-oxo-2H-1-benzopyran **3b**: m.p. 181-183°C (lit., ¹⁴ 182–184°C); ν_{max} (KBr) /(cm⁻¹) 2235 (CN), 1730 (C=O), 1605 (C=C); $\delta_{\rm H}$ (CDCl₃) 7.29–7.68 (4H, m, ArH), 8.56 (1H, s, CH).

3-hydroxycarbonyl-2-oxo-2H-1-benzopyran **3c**: m.p. 187°C (lit.,¹⁵ 187°C); v_{max} (KBr) /(cm⁻¹) 1735 (C=O), 1610 (C=C); $\delta_{\rm H}$ (CDCl₃) 7.55–7.82 (4H, m, ArH), 8.85 (1H, s, CH), 13.80 (1H, s COOH exchange deuterium oxide).

3-acetyl-2-oxo-2H-1-benzopyran **3d**: m.p. 123°C (lit.,¹⁵ 124°C); v_{max} (KBr) /(cm⁻¹) 1730 (C=O), 1604 (C=C); $\delta_{\rm H}$ (CDCl₃) 1.83 (3H, s, CH₄) 7.33–7.65 (4H, m, ArH), 8.86 (1H, s, CH).

³-phenylsulfonyl-2-oxo-2H-1-benzopyran **3e**: m.p. 214–216°C (lit.,¹⁶ 214–215°C); v_{max} (KBr) /(cm⁻¹) 1725 (C=O), 1320, 1140 (SO₂), 1600 (C=C); $\delta_{\rm H}$ (CDCl₃) 7.26–8.17 (9H, m, ArH), 8.80 (1H, s, CH).

3-phenylsulfonyl-2-oxo-2H-1-benzopyran **3f**: m.p. 214–216°C (lit., ¹⁶ 214–215°C); v_{max} (KBr) /(cm⁻¹) 1725(C=O), 1320, 1140 (SO₂), 1600 (CH=); $\delta_{\rm H}$ (CDCl₃) 7.26–8.17 (9H, m, ArH), 8.80 (1H, s, CH).

6-chloro-3-ethoxycarbonyl-2-oxo-2H-1-benzopyran **3g**: m.p. 146°C. (lit.,¹⁷ 145–147°C); v_{max} (KBr) /(cm⁻¹): 1765 (C=O), 1610 (C=C); δ_{H} (CDCl₃) 1.42 (3H, t, *J* = 7.2Hz, CH₃), 4.37–4.46 (2H, m, CH₂), 7.27–7.57 (3H, m, ArH), 8.52 (1H, s, CH).

 $\tilde{6}$ -chloro-3-cyano-2-oxo-2H-1-benzopyran **3h**: m.p. 192°C; ν_{max} (KBr) /(cm⁻¹) 2240 (CN), 1735 (C=O), 1615 (C=C); $\delta_{\rm H}$ (CDCl₃) 7.29–7.71 (3H, m, ArH), 8.45 (1H, s, CH); *m*/z 207 (³⁷Cl-M⁺, 31.9), 205 (³⁵Cl-M⁺, 100), 209 (34.8), 179 (28.2), 177 (85.4), 114 (78.2), 87 (17.3), 63 (17.1).

6-chloro-3-hydroxycarbonyl-2-oxo-2H-1-benzopyran **3i**: m.p. 198-200°C(lit.,¹⁷ 198–199°C); v_{max} (KBr) /(cm⁻¹) 1760 (C=O), 1600 (C=C); $\delta_{\rm H}$ (CDCl₃) 7.55–7.82 (4H, m, ArH), 8.85 (1H, s, CH), 13.70 (1H, s, COOH exchange deuterium oxide).

6-chloro-3-acetyl-2-oxo-2H-1-benzopyran **3j**: m.p. 148–150°C; v_{max} (KBr) /(cm⁻¹) 1745 (C=O), 1604 (C=C); $\delta_{\rm H}$ (CDCl₃) 1.82 (3H, s, CH₃), 7.26–7.65 (3H, m, ArH), 8.41 (1H, s, CH); *m*/z 224 (³⁷Cl-M⁺, 17.1), 222 (³⁵Cl-M⁺, 49.4), 209 (34.8), 207 (100), 179 (12.6), 123 (19.5), 57 (41.6).

6-chloro-3-phenylsulfonyl-2-oxo-2H-1-benzopyran **3k**: m.p. 242°C (lit.,¹⁶ 242°C); ν_{max} (KBr) /(cm⁻¹) 1725 (C=O), 1320, 1130 (SO₂), 1605 (C=C); $\delta_{\rm H}$ (CDCl₃) 7.26–8.17 (8H, m, ArH), 8.78 (1H, s, CH).

We thank the National Natural Science Foundation of China (Project No.29872010 and 294938004) for financial support.

Received 6 January 2000; accepted 2 May 2001 Paper 01/694

References

- 1 W.O. Foye, *Prinicipi di Chimica Farmaceutica*, Piccin, Padova, Italy, 1991, 416.
- 2 L.L. Andreani and E. Lapi, Boll. Chim. Farm., 1960, 99, 583.
- 3 Y.L. Zhang, B. Chen, K. Zheng, M. Xu, L. Zhang and X. Lei,
- YaoXue XueBao, 1982, 17, 17 (*Chem Abstr.*, 1982, 96, 135383e).
 L. Bonsignore, G. Loy, D. Secci and A. Calignano, *Eur. J. Med. Chem.*, 1993, 28, 517.
- 5 (a) E. Spath, Ber., 1937, 70, 83; (b) H. Yanagisawa and H. Kondo, Yakugaku Zasshi, 1921, 472, 498.
- 6 R.L. Shriner, Org. React., 1942, 1, 1.
- 7 A.K. George and O. P. John, J. Org. Chem., 1979, 44, 2480.
- 8 (a) E. Knoevenagel, Ber., 1904, 37, 4461; (b) G. Jones, Org. React., 1967, 15, 204.
- 9 G.A. Molander, In *Comprehensive Organic Synthesis*, B.M. Trost, I. Fleming, Eds. Pergamons, Oxford, 1991, 1, 251-282.
- 10 Y. Yu, R. Lin and Y. Zhang, Teteahedron Lett., 1993, 34, 4547.
- 11 X.Y. Chen, W.L. Bao and Y.M. Zhang, Chin. Chem. Lett., 2000, 11, 483.
- 12 T. Arime, N. Kato, F. Komadate, H. Sacgusa and N. Mori, Synth. Commun., 1994, 24, 3315.
- 13 W.L. Bao and Y.M. Zhang, Chin. J. Org. Chem.(in Chinese), 1998, 18, 272.
- 14 A.C. Jose, M.C. Juan, G. Angel, D. Luna and M.M. Jose, J. Org. Chem., 1984, 49, 5195.
- 15 J. Buckingham, Dictionary of Organic compounds, Chapman and Hall, New York, 5th edn, 1982, 4435.
- 16 J.R. Merchant and P.J. Shah, J. Heterocyclic Chem., 1981, 18, 441.
- 17 L. Bonsignore, F. Cottiglia, A.M. Maccioni and D. Secci, J. Heterocyclic Chem., 1995, 32, 573.